

COMANDO DA AERONÁUTICA CENTRO DE INVESTIGAÇÃO E PREVENÇÃO DE ACIDENTES AERONÁUTICOS

ADVERTÊNCIA

O único objetivo das investigações realizadas pelo Sistema de Investigação e Prevenção de Acidentes Aeronáuticos (SIPAER) é a prevenção de futuros acidentes aeronáuticos. De acordo com o Anexo 13 à Convenção sobre Aviação Civil Internacional (Convenção de Chicago) de 1944, da qual o Brasil é país signatário, não é propósito desta atividade determinar culpa ou responsabilidade. Este Relatório Final Simplificado, cuja conclusão baseia-se em fatos, hipóteses ou na combinação de ambos, objetiva exclusivamente a prevenção de acidentes aeronáuticos. O uso deste Relatório Final Simplificado para qualquer outro propósito poderá induzir a interpretações errôneas e trazer efeitos adversos à Prevenção de Acidentes Aeronáuticos. Este Relatório Final Simplificado é elaborado com base na coleta de dados, conforme previsto na NSCA 3-13 (Protocolos de Investigação de Ocorrências Aeronáuticas da Aviação Civil conduzidas pelo Estado Brasileiro).

RELATÓRIO FINAL SIMPLIFICADO

1. INFORMAÇÕES FACTUAIS

DADOS DA OCORRÊNCIA									
DATA - HORA		INVESTIGAÇÃO			SUMA N°				
08FEV2012 - 10:50 (UTC	:)	SERIPA IV			A-592/CENIPA/2018				
CLASSIFICAÇÃO		TIPO(S)			SUBTIPO(S)				
ACIDENTE		[SCF-PP] FALHA OU MAU NCIONAMENTO DO MOTOR	FALHA DO MOTOR EM VOO						
LOCALIDADE		MUNICÍPIO	UF		COORD	ENADAS			
FAZENDA HARMONIA		SONORA	MS		17°38'41"S	054°44'22"W			

DADOS DA AERONAVE							
MATRÍCULA	FABRICANT	MODELO					
PT-UUJ	NEIVA	EMB-202A					
OPERADOR		REGISTRO		OPERAÇÃO			
PART	TICULAR	TPP		AGRÍCOLA			

PESSOAS A BORDO / LESÕES / DANOS À AERONAVE									
A BORDO			LESÕES				DANOS À AERONAVE		
			Ileso	Leve	Grave	Fatal	Desconhecido	D.	IOS A AERONAVE
Tripulantes	1		1	-	-	-	-		Nenhum
Passageiros	-		-	-	-	-	-		Leve
Total	1		1	-	-	-	-	Χ	Substancial
							Destruída		
Terceiros	-		-	-	-	-	-		Desconhecido

1.1. Histórico do voo

A aeronave decolou da Fazenda Sonora (SSUA), Sonora, MS, por volta das 10h45min (UTC), a fim de realizar aplicação de inseticida em uma plantação de cana-de-açúcar, localizada na Fazenda Harmonia, com um piloto a bordo.

Ao ingressar na área a ser pulverizada e descer para a altura de aplicação, o piloto ouviu um ruído anormal no motor, seguido de perda de potência. Ato contínuo, foi aplicada potência máxima e alijada a carga existente no *hopper*. Entretanto, o trem de pouso penetrou nas folhagens da cultura e o piloto não conseguiu evitar o impacto da aeronave contra o solo.

Figura 1 - Aeronave após o impacto contra o solo.

A aeronave teve danos substanciais. O piloto saiu ileso.

2. ANÁLISE (Comentários / Pesquisas)

Tratava-se de um voo para aplicação de inseticida em uma plantação de cana-deaçúcar.

O piloto possuía a licença de Piloto Comercial - Avião (PCM) e estava com as habilitações de Avião Monomotor Terrestre (MNTE) e de Avião Agrícola (PAGA) válidas.

- O piloto estava qualificado e possuía experiência no tipo de voo.
- O piloto estava com o Certificado de Capacidade Física (CCF) válido.

A aeronave estava dentro dos limites de peso e balanceamento especificados pelo fabricante.

A aeronave, de número de série 20001030, foi fabricada pela Indústria Aeronáutica Neiva, em 2007, e estava registrada na Categoria de Serviços Aéreos Privados (TPP).

A aeronave estava com o Certificado de Aeronavegabilidade (CA) válido.

As cadernetas de célula, motor e hélice estavam com as escriturações atualizadas.

Parte do combustível remanescente na aeronave foi enviada para análise na Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP). De acordo com o Boletim de Análise, emitido pela Agência, o combustível retirado da aeronave encontrava-se dentro das especificações previstas.

Os exames realizados após a Ação Inicial revelaram que a perda de potência do motor foi causada pelo desgaste elevado em um dos cames do eixo de comando de válvulas, amassamentos e perda de material na superfície de duas capas de tucho (Figura 2).

Figura 2 - Detalhe do desgaste no comando de válvulas.

O came com desgaste, indicado pela seta da Figura 2, tinha a altura de 50mm, enquanto os outros mediam 100mm.

A Figura 3 mostra duas capas de tucho danificadas ao lado de uma capa nova, sem desgaste.

Figura 3 - Capas de tucho danificadas ao lado de uma capa nova.

Os componentes em questão foram enviados à Divisão de Materiais do Departamento de Ciência e Tecnologia da Aeronáutica (DCTA) para análise.

O Relatório de Análise de Falha concluiu que:

"A dureza do came e do topo da capa de tucho são compatíveis, não sendo responsável pelo desgaste observado em um dos cames do eixo de manivela. Podese observar desgaste e perda de material na cabeça do tucho e a análise química do mesmo o enquadrou como sendo um ferro fundido."

A literatura sobre análise de falhas materiais dá a denominação de microfissura e lascamento, do original em inglês *pitting* e *spalling*, aos desgastes encontrados nos cames e capas de tucho da aeronave acidentada.

O pitting é uma falha comum nos cames dos eixos de ressaltos e capas de tuchos causada pelas elevadas tensões de contato e repetitividade de ciclos a que esses componentes são submetidos. Em razão da forma arredondada do came e da superfície do tucho, o ponto de contato fica restrito a um pequeno arco em uma área de contato muito limitada.

Se a película de óleo lubrificante for insuficiente para impedir o contato direto metalmetal, as camadas de óxido que protegem as superfícies do ressalto podem ser quebradas por meio de aquecimento.

Tal fato, associado a elevadas tensões de contato, faz com que uma trinca por fadiga se inicie nas superfícies dos tuchos e dos cames. A trinca se propaga paralelamente à superfície por uma curta distância antes de mudar de direção ou se ramificar. O pitting se forma quando a trinca cresce lateralmente em extensão, acarretando perda de material da superfície.

O spalling é resultante das tensões de cisalhamento que ocorrem logo abaixo da superfície de contato e, do mesmo modo que o *pitting*, tem sua origem nas elevadas tensões de contato e repetitividade de ciclos a que os cames e as capas de tucho são submetidas durante a operação do motor.

Após algum tempo, as tensões de cisalhamento dão origem a trincas que, gradualmente, se estendem até superfície. À medida que os elementos rolantes passam sobre as trincas, fragmentos de material se desprendem da superfície, dando origem aos lascamentos. Motores que operam com etanol, como o instalado no PT-UUJ, apresentam maior potência que aqueles que operam com gasolina de aviação (AVGAS).

Com a elevação da potência, o motor trabalha com maior rotação do eixo de manivelas, acarretando maior exigência de seus componentes internos e, consequentemente, maior necessidade de lubrificação, com vistas a minimizar os efeitos adversos do contato metal-metal.

No mesmo sentido, é normal, em motores convencionais, que o excesso de combustível não queimado pela combustão se misture ao óleo lubrificante do motor. Isso, obviamente, dentro de limites predeterminados pelos fabricantes e monitorados por meio de análises espectrométricas de óleo.

Como o etanol possui maior concentração de água do que a gasolina de aviação, motores que operam com etanol, comprovadamente, apresentam maior incidência de problemas relacionados à corrosão.

Desse modo, pode-se dizer que as causas mais comuns para o aparecimento de falhas por microfissura e lascamento em motores a combustão que operam à base de etanol são a lubrificação inadequada e a corrosão.

A lubrificação inadequada pode ser resultante da operação pouco frequente do motor, da não substituição do óleo lubrificante nos intervalos recomendados, da utilização de óleo lubrificante fora das especificações previstas e da aplicação de rotações elevadas com o motor ainda frio.

A corrosão nos tuchos e cames do eixo de ressaltos ocorre, principalmente, devido à operação pouco frequente do motor e ao acúmulo de vapor d'água - desprendido da evaporação do etanol misturado ao óleo lubrificante - na região do comando de válvulas.

Em suma, tais fatores, isoladamente ou em conjunto, contribuíram para a perda de potência que resultou na queda da aeronave.

Vale ressaltar que os problemas relacionados ao desgaste prematuro das capas de tucho e dos cames do eixo de ressaltos foram mitigados pela *Lycoming* com a implantação do tucho roletado (Figura 4).

Figura 4 - Tucho roletado.

Conforme pode ser observado na Figura 5, com o advento desse componente, o rolete desliza sobre os cames do eixo comando, diminuindo sobremaneira a carga de impacto e, consequentemente, ocasionando menor desgaste.

Figura 5 - Tucho roletado em contato com o came do eixo de ressaltos.

3. CONCLUSÕES

3.1. Fatos

a) o piloto estava com o Certificado de Capacidade Física (CCF) válido;

- b) o piloto estava com as habilitações de Avião Monomotor Terrestre (MNTE) e de Avião Agrícola (PAGA) válidas;
- c) o piloto possuía experiência no tipo de voo;
- d) a aeronave estava com o Certificado de Aeronavegabilidade (CA) válido;
- e) a aeronave estava dentro dos limites de peso e balanceamento;
- f) as escriturações das cadernetas de célula, motor e hélice estavam atualizadas;
- g) segundo o piloto, ao chegar na área e descer para altura da aplicação, antes do primeiro tiro, o motor perdeu potência;
- h) o piloto levou os manetes à frente e iniciou o alijamento da carga;
- i) o trem de pouso penetrou nas folhagens da cultura e a aeronave impactou contra o solo;
- j) o combustível retirado da aeronave encontrava-se dentro das especificações previstas;
- k) a perda de potência está associada ao desgaste elevado em um dos cames do eixo de comando de válvulas, amassamentos e perda de material na superfície de duas capas de tucho;
- I) a aeronave teve danos substanciais; e
- m) o piloto saiu ileso.

3.2 Fatores Contribuintes

- Aplicação dos comandos indeterminado;
- Julgamento de pilotagem indeterminado; e
- Manutenção da aeronave indeterminado.

4. RECOMENDAÇÕES DE SEGURANÇA

Recomendações emitidas no ato da publicação deste relatório.

Não há.

5. ACÕES CORRETIVAS OU PREVENTIVAS ADOTADAS

Não houve.

Em, 28 de outubro de 2019.